On the equivariant K– and KO–homology of some special linear groups
نویسندگان
چکیده
We compute the equivariant $KO$-homology of classifying space for proper actions $\textrm{SL}_3(\mathbb{Z})$ and $\textrm{GL}_3(\mathbb{Z})$. also Bredon homology $K$-homology spaces $\textrm{PSL}_2(\mathbb{Z}[\frac{1}{p}])$ $\textrm{SL}_2(\mathbb{Z}[\frac{1}{p}])$ each prime $p$. Finally, we prove Unstable Gromov-Lawson-Rosenberg Conjecture a large class groups whose maximal finite subgroups are odd order have periodic cohomology.
منابع مشابه
on the effect of linear & non-linear texts on students comprehension and recalling
چکیده ندارد.
15 صفحه اولEquivariant K-homology for Some Coxeter Groups
We obtain the equivariant K-homology of the classifying space EW for W a right-angled or, more generally, an even Coxeter group. The key result is a formula for the relative Bredon homology of EW in terms of Coxeter cells. Our calculations amount to the K-theory of the reduced C∗-algebra of W , via the Baum-Connes assembly map.
متن کاملCharacterization of some projective special linear groups in dimension four by their orders and degree patterns
Let $G$ be a finite group. The degree pattern of $G$ denoted by $D(G)$ is defined as follows: If $pi(G)={p_{1},p_{2},...,p_{k}}$ such that $p_{1}
متن کاملSome Representations of Special Linear Groups
Mat r x ( F q ) o f a l l r b y r m a t r i c e s o v e r F q , b y C t h e g r o u p G L t i ( F q ) o f t h e u n i t s of M, and by S the special linear subgroup SL , (F q ) o f C . F o r a n a r b i t r a r y field F containing F q , l e t U s t a n d f o r t h e ( c o m m u t a t i v e ) p o l y n o m i a l a l g e b r a F[xl, , x r ] , a n d c o n s i d e r U g r a d e d a s u s u a l : U...
متن کاملTHE RATIONAL CHARACTER TABLE OF SPECIAL LINEAR GROUPS
In this paper we will give the character table of the irreducible rational representations of G=SL (2, q) where q= , p prime, n>O, by using the character table and the Schur indices of SL(2,q).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebraic & Geometric Topology
سال: 2021
ISSN: ['1472-2739', '1472-2747']
DOI: https://doi.org/10.2140/agt.2021.21.3483